Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae.

نویسندگان

  • R Egner
  • Y Mahé
  • R Pandjaitan
  • K Kuchler
چکیده

Multidrug resistance (MDR) to different cytotoxic compounds in the yeast Saccharomyces cerevisiae can arise from overexpression of the Pdr5 (Sts1, Ydr1, or Lem1) ATP-binding cassette (ABC) multidrug transporter. We have raised polyclonal antibodies recognizing the yeast Pdr5 ABC transporter to study its biogenesis and to analyze the molecular mechanisms underlying MDR development. Subcellular fractionation and indirect immunofluorescence experiments showed that Pdr5 is localized in the plasma membrane. In addition, pulse-chase radiolabeling of cells and immunoprecipitation indicated that Pdr5 is a short-lived membrane protein with a half-life of about 60 to 90 min. A dramatic metabolic stabilization of Pdr5 was observed in delta pep4 mutant cells defective in vacuolar proteinases, and indirect immunofluorescence showed that Pdr5 accumulates in vacuoles of stationary-phase delta pep4 mutant cells, demonstrating that Pdr5 turnover requires vacuolar proteolysis. However, Pdr5 turnover does not require a functional proteasome, since the half-life of Pdr5 was unaffected in either pre1-1 or pre1-1 pre2-1 mutants defective in the multicatalytic cytoplasmic proteasome that is essential for cytoplasmic protein degradation. Immunofluorescence analysis revealed that vacuolar delivery of Pdr5 is blocked in conditional end4 endocytosis mutants at the restrictive temperature, showing that endocytosis delivers Pdr5 from the plasma membrane to the vacuole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of the protein and lipid content of the plasma membrane by ATP-binding cassette transporter proteins in S. Cerevisiae

Pdr5 and Yor1 are two ATP-binding cassette transporters regulated by the pleiotropic drug resistance (PDR) network in the yeast Saccharomyces cerevisiae. Recent work demonstrated that a pdr5 yor1 strain confers remarkable resistance to a sphingolipid intermediate, phytosphingosine (PHS), which was surprising as loss of these transporters normally leads to elevated drug sensitivity. PHS is toxi...

متن کامل

Contributions of Aspergillus fumigatus ATP-binding cassette transporter proteins to drug resistance and virulence.

In yeast cells such as those of Saccharomyces cerevisiae, expression of ATP-binding cassette (ABC) transporter proteins has been found to be increased and correlates with a concomitant elevation in azole drug resistance. In this study, we investigated the roles of two Aspergillus fumigatus proteins that share high sequence similarity with S. cerevisiae Pdr5, an ABC transporter protein that is c...

متن کامل

ELM1 is required for multidrug resistance in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, transcription of several drug transporter genes, including the major transporter gene PDR5, has been shown to peak during mitosis. The significance of this observation, however, remains unclear. PDR1 encodes the primary transcription activator of multiple drug transporter genes in S. cerevisiae, including PDR5. Here, we show that in synchronized PDR1 and pdr1-3 (mul...

متن کامل

The transmission interface of the Saccharomyces cerevisiae multidrug transporter Pdr5: Val-656 located in intracellular loop 2 plays a major role in drug resistance.

Pdr5 is a major ATP-binding cassette (ABC) multidrug transporter regarded as the founding member of a fungal subfamily of clinically significant efflux pumps. When these proteins are overexpressed, they confer broad-spectrum ultraresistance. To better understand the evolution of these proteins under selective pressure, we exposed a Saccharomyces cerevisiae yeast strain already overexpressing Pd...

متن کامل

Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative.

Hyperexpression of the Saccharomyces cerevisiae multidrug ATP-binding cassette (ABC) transporter Pdr5p was driven by the pdr1-3 mutation in the Pdr1p transcriptional regulator in a strain (AD/PDR5(+)) with deletions of five other ABC-type multidrug efflux pumps. The strain had high-level fluconazole (FLC) resistance (MIC, 600 microg ml(-1)), and plasma membrane fractions showed oligomycin-sensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 1995